
AUTOMATIC GENERATION OF APPLICATION-SPECIFIC ACCELERATORS FOR FPGAS
FROM PYTHON LOOP NESTS

David Sheffield, Michael Anderson, Kurt Keutzer

UC Berkeley: Department of Electrical Engineering and Computer Sciences
Berkeley, CA USA

{dsheffie,mjanders,keutzer}@eecs.berkeley.edu

ABSTRACT
We present Three Fingered Jack, a highly productive ap-
proach to mapping vectorizable applications to the FPGA.
Our system applies traditional dependence analysis and re-
ordering transformations to a restricted set of Python loop
nests. It does this to uncover parallelism and divide compu-
tation between multiple parallel processing elements (PEs)
that are automatically generated through high-level synthe-
sis of the optimized loop body. Design space exploration
on the FPGA proceeds by varying the number of PEs in the
system. Over four benchmark kernels, our system achieves
3× to 6× relative to soft-core C performance.

1 Introduction
The emergence of SoCs with tightly coupled FPGA fabric
and high-performance multicore CPUs encourages a new
way of building FPGA-accelerated systems. The FPGA +
multiprocessor SoC will allow the acceleration of select ker-
nels on the FPGA with lower overhead than previously pos-
sible. Portions of the program that cannot be accelerated
on FPGA run on the high-performance CPUs. This moti-
vates a selective and embedded approach to design: the pro-
grammer selects only certain computations for acceleration.
These computations are embedded as a subset of a high-level
language. This enables the designer to use the same source
code to target both CPU and FPGA.

We present Three Fingered Jack1, a vectorizing com-
piler and high-level synthesis (HLS) system embedded in
the Python language. In our system, the programmer selects
dense loop nests in Python using the ”decorator” syntax that
redirects the Python run-time to our compiler. Because our
compiler is restricted to dense loop nests, we can apply vec-
torizing compiler algorithms to the loop nests and traditional
HLS techniques to automatically generate parallel process-
ing elements.

Our work is inspired by the Selective Embedded Just-in-
time Specialization (SEJITS) methodology, which uses em-
bedded domain-specific languages to help mainstream pro-

1http://www.eecs.berkeley.edu/˜dsheffie/
threeFingeredJack

LLVM IR generation

HLS flow + FPGA tools

Dependence testing

Loop transformations:
•  Distribution
•  Interchange

Python front-end

Fig. 1: Our compiler flow

 for(i=0;i<n;i++)
 for(j=0;j<n;j++)

for(k=0;k<n;k++)

Y[i][j] += A[i][k]*B[k][j]

 for(j=0;j<n;j++)
 for(k=0;k<n;k++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

 for(k=0;k<n;k++)
 for(j=0;j<n;j++)

for(i=0;i<n;i++)

Y[i][j] += A[i][k]*B[k][j]

Nesting A Nesting B Nesting C

Fig. 2: Examples of matrix multiply loop interchange

grammers target Nvidia GPUs and multicore CPUs [3]. We
extend the SEJITS ideas to target FPGAs. Additionally, our
compiler is extensible and can support multiple backends.
Though not the focus of this work, we also have a CPU back-
end and limited support for GPUs with an OpenCL backend.

2 Background
Data dependence gives constraints on the possible ordering
of statements in a program. The order in which statements
are executed can have a profound impact on performance,
which further depends on the target platform. For exam-
ple, consider the example of matrix-matrix multiply shown
with three different orderings in Figure 2. In Nesting A,
dependence theory tells us that the k loop must run sequen-
tially because it reads and writes the same memory location
(Y [i][j]) in every iteration. The theory also tells us that the
i and j loops carry no dependence. Therefore, they can be
executed in parallel, allowing us to shift the loops inward, as
is shown in Nesting B and C.

How we choose to execute these loops will vary for each
platform. On a CPU with vector units, we may choose Nest-
ing C. With this configuration, we can vectorize over the

inner j loop and parallelize over the outer i loop.
We can even consider directly mapping these loops to

custom parallel processing elements (PEs) on FPGAs. For
this consideration, we take Nesting B and parallelize over
the i loop. On other platforms, Nesting B may be disadvan-
tageous due to synchronizing n times throughout the pro-
gram. However, synchronization on the FPGA is very fast
due to custom barrier networks.

3 Compiler Implementation
Our compilation process begins with a dense loop nest spec-
ified in Python using NumPy arrays. Our front-end then
generates an intermediate XML representation that is inter-
pretable by our optimizing compiler. The optimizing com-
piler analyzes the loop nest using dependence and does source-
level transformations such as loop reordering, blocking, and
unrolling. Finally, separate backends generate application-
specific FPGA multiprocessors, and code for CPUs with
vector units and OpenCL programmable GPUs.

The Python front-end is based on the Copperhead [2]
framework. Copperhead compiles a small data-parallel sub-
set of Python to Nvidia CUDA for GPU execution. Copper-
head requires kernels be statically well-typed. We further
restrict the Copperhead type system to support only 32-bit
NumPy data types in our system.

Our most significant modifications to Copperhead are
the addition of for-loops to the grammar and removal of
the data-parallel primitives. We only support for-loops with
fixed bounds, no control-flow in the loop body, and affine ar-
ray indexing functions. These restrictions simplify compiler
construction and enable fast dependence checking heuris-
tics. Copperhead was designed to show the applicability
of map-reduce style functional programming on the GPU.
In contrast, we assert focusing on iterative constructs using
dependence analysis is a better approach for constructing
FPGA accelerators.

When the Python interpreter encounters a function wrapped
with the @fpga decorator, execution is redirected to our
handler. After applying the syntax and semantic checking
features of the Copperhead framework, we export the abstract-
syntax tree as XML for our compiler.

The algorithms used to generate parallel PEs are simi-
lar to vectorization algorithms presented by Allen [1]. We
focus on algorithms designed for vectorization instead of
those for multiprocessor parallelization because vector in-
struction semantics are more desirable given our ultimate
goal of hardware implementation. When a loop is vector-
ized, we guarantee it carries no dependence; therefore, each
iteration of the loop proceeds in parallel. Our automatically
generated processing engines operate in the spirit of vector
processors. Instead of executing generic vector instructions
(such as vector-add or vector-load), our PEs execute the en-
tire body of loop as an application-specific vector instruc-
tion.

for	 i	 in	 range(0,1325):	
	 	 for	 m	 in	 range(0,16):	

Out[i][m]	 =	 ….	

for	 i	 in	 range(1325,2650):	
	 	 for	 m	 in	 range(0,16):	

Out[i][m]	 =	 ….	

for	 i	 in	 range(2650,3975):	
	 	 for	 m	 in	 range(0,16):	

Out[i][m]	 =	 ….	

for	 i	 in	 range(3975,5300):	
	 	 for	 m	 in	 range(0,16):	

Out[i][m]	 =	 ….	

fo
r	
f	 i
n	
ra
ng
e(
0,
39
)	

Fig. 3: GMM benchmark mapped onto FPGA PE template

To enable vectorization, our compiler performs two key
optimizations. First, it applies loop distribution to split the
body of a multiple-statement loop into multiple smaller loops.
Second, if a loop carries dependence, loop interchange shifts
it to the outer-most legal loop position. This enhances vec-
torization opportunities. After applying reordering transfor-
mations, our framework passes dependence analysis along
with an intermediate representation to the FPGA backend.

PE cluster architecture The FPGA back-end generates PEs
similar to vector-lanes from a traditional vector processor.
As our PEs execute a single “virtual” vector instruction that
potentially encompasses several dependence-free loops, we
allow a limited amount of slip between PEs to tolerate mem-
ory latency effects. Slip refers to the case when PEs are run-
ning out of lockstep. Without a limited amount of slip, we
would have to prevision significantly more memory band-
width to tolerate multiple memory instructions occurring at
the same cycle.

In the dense kernels we use with our system, we have
found that memory instructions occur approximately every 4
to 8 instructions. The current implementation of our LLVM
to Verilog flow generates PEs with blocking memory oper-
ations, thereby simplifying the interaction with variable la-
tency cached memory. Therefore, a single PE cannot sat-
urate our simple memory subsystem. We exploit this by
sharing the global memory interface within a cluster. We
evaluate our PE clusters with a 16 kByte, direct-mapped,
write-back cache with 128-byte cache-lines.

To illustrate how computation occurs within a cluster of
PEs, Figure 3 shows a mapping of a benchmark kernel. Note
that the f loop is mapped to the synchronization and control
component of the processing cluster and each of the 4 PEs
executes a 1350-entry slice of the i iteration space.

FPGA back-end Our FPGA back-end uses the LLVM [5]
framework because it enables straightforward code optimiza-
tion and machine code generation passes. In addition, LLVM
includes a vast repertoire of traditional compiler transforma-
tions that we apply to the intermediate representation gen-
erated by our vectorizing front-end. In particular, we ap-
ply dead-code elimination, loop-invariant code motion, and

peephole optimization to optimize the IR generated by our
front-end.

To generate PEs, we map LLVM IR to Verilog RTL. Al-
though our RTL generator is similar in principle other sys-
tems, our PE cluster requires additional features not sup-
ported by existing systems. Above all, we need stalling
memory support due contention for the shared memory in-
terface and non-deterministic memory access times due to
caches.

Our RTL generation system uses conventional HLS al-
gorithms [6].The user specifies the mix of functional units,
latency, and support for pipelined operation. The system
schedules the data-path using either list scheduling or an
integer programming formulation. A small library of op-
erations supports single precision floating-point operations.
Integer operations are generated behaviorally to support ar-
bitrary pipelining depths.

4 Benchmarks
We evaluate our system on the following benchmarks. The
benchmark sizes are implied in the loop-bounds.
Vector-vector add (VV) Vector-vector add is the canonical
data-parallel benchmark.

for i in range(0,1024):
c[i] = a[i] + b[i]

Color conversion (CC) We evaluate a simple color space
conversion benchmark for a 128x128 pixel image. Color
conversion can be expressed as a 3x3 matrix-transform ap-
plied to each pixel in an image.

for p in range(0,16384):
for i in range(0,3):
for j in range(0,3):
img_out[p][i] = img_out[p][i] +

img_in[p][j]*mat[i][j]

Matrix-matrix multiply (MM) Matrix-matrix multiply is a
widely used kernel in dense linear algebra libraries.

for i in range(0,1024):
for j in range(0,1024):

for k in range(0,1024):
c[i][j] += a[i][k]*b[k][j]

Gaussian mixture model evaluation (GMM) Modern sp-
eech recognition systems model the probability of a sound
occurrence using a mixture of multivariate Gaussian distri-
butions.

for f in range(0,39):
for i in range(0,5300):

for m in range(0,16):
LogProb[i][m] = LogProb[i][m] +
(In[f] - Mean[i][f][m])*
(In[f] - Mean[i][f][m])*
(InvVar[i][f][m])

VVADD CC MM GMM
1 PE 3989 4057 5342 5666
2 PEs 4219 4772 7452 8178
3 PEs 4568 5474 9592 10657
4 PEs 4879 6115 11641 13538
5 PEs 5135 6824 13670 15758
6 PEs 4832 7560 15554 17967
7 PEs 5134 8414 18022 20743
8 PEs 5414 9134 19522 22743

Table 1: FPGA LUT Statistics (including memory subsystem)

5 Results and analysis
FPGA statistics For evaluation of our PE generation sys-
tem, we used a Xilinx XC6VLX240T-1FFG1156 FPGA for
our study. To implement our designs, we used Synopsys
Synplify Premier F-2011.09-SP1 for synthesis and Xilinx
ISE 13.4 for physical implementation.

We use an in-order 5-stage RISC-V processor [8] with
a 4 kB instruction cache to compare with our automatically
generated PEs. We used our compiler to generate optimized
C implementations for the soft-core CPU. When compiled
to our Virtex-6 FPGA, the RISC-V soft-core requires 5570
LUTs, 3 DSP48s, and 5 BRAMs. It operates at 91 MHz. We
compiled C benchmarks using GCC 4.4.0.

The FPGA LUT usage statistics of the automatically gen-
erated PEs for each kernel are shown in Table 1. The PEs run
at approximately 160 MHz for all benchmarks. Resource
usage grows linearly with number of PEs for all kernels.
We use the same memory subsystem for both the soft-core
CPU and the automatically generated PEs, so we can di-
rectly compare LUT utilization between the two implemen-
tations. The vector-vector add kernel uses fewer LUTs than
the soft-core CPU does for all configurations as multipli-
cation is not required for address computation with a one-
dimensional array. In contrast, a single matrix-multiply or
GMM PE with memory subsystem requires approximately
the same number of LUTs as our soft-core CPU does. The
color conversion kernel falls between the extremes, as 4 color
conversion PEs require approximately the same number of
LUTs as the soft-core does.
Performance We present results for single-cycle global mem-
ory (Figure 4) and global memory backed by a 16kB shared
write-back cache with 128-byte cache lines. We evaluate
the cache-based systems with an 11-cycle (Figure5) cache
reload penalty. We use 11-cycle reloads because we ex-
pect 44 cycle DRAM latency [10] (assuming PEs run at 91
MHz and memory interface runs at 400 MHz). We compute
speed-up by comparing the number of execution cycles on
the soft-core to the number of execution cycles on the PE
engine. This does not account for the different in obtainable
frequency between the soft-core and the PEs.

As shown in Figure 4, our PEs are highly scalable with
single-cycle memory. The vector-vector add kernel scales

 0

 1

 2

 3

 4

 5

 6

 7

 8

RISCV 1 2 3 4 5 6 7 8

C
yc

le
 s

pe
ed

up
 n

or
m

al
iz

ed
 to

 R
IS

C
V

Number of Processing Elements (PEs)

Performance with Ideal Memory

Vector Add
Color Conversion

Integer MM
Integer GMM

Fig. 4: Scaling with single-cycle global memory

to nearly 7× soft-core performance with 8 PEs. In addi-
tion, both vector-vector add and matrix-multiply scale to
slightly greater than 6× soft-core performance with 8 PES.
The GMM kernel has the poorest scaling, limited to a maxi-
mum of approximately 3× soft-core performance. The GMM
kernel is limited by shared cluster memory bandwidth for
configurations greater than 4 PEs. The scalability results
with single-cycle memories are encouraging because they
confirm our decision to multiplex the global memory access
port. In addition, while single-cycle memory access is infea-
sible for large memories, selectively partitioning data to take
advantage of block RAMs on FPGAs appears favorable.

 0

 1

 2

 3

 4

 5

 6

 7

 8

RISCV 1 2 3 4 5 6 7 8

C
yc

le
 s

pe
ed

up
 n

or
m

al
iz

ed
 to

 R
IS

C
V

Number of Processing Elements (PEs)

Performance with 11-Cycle Writeback Cache

Vector Add
Color Conversion

Integer MM
Integer GMM

Fig. 5: Scaling with a writeback cache with 11-cycle reloads

Figure 5 shows shared cache performance with 11-cycle
reloads. The color conversion achieves greater than 5× soft-
core performance with 11-cycle reloads due to reuse of the
conversion matrix. The other kernels scale from 1× to nearly
4× with 11-cycle reloads. While scalability with cached
memory is reduced compared with single-cycle memory;
nevertheless, adding PEs increases performance. The ad-
dition of private caches to each PE would reduce conflict
misses and improve performance.

6 Related Work
The theory of dependence and loop optimizations originated
in the field of FORTRAN compilers for numerical comput-
ing. Since then, several works have attempted to integrate
these ideas into traditional high-level synthesis systems. Wein-
hardt [9] and Diniz [4] used dependence analysis on FPGA
designs to enhance performance by executing independent
iterations of a loop-nest through a heavily pipelined circuit.
Dependence analysis enabled temporal multiplexing of a sin-
gle data path to increase throughput. In contrast, we use de-
pendence analysis to generate parallel processing elements.
Our system is most similar to the systolic array of PEs gen-
erated by the PICO system [7].

7 Conclusions
We have evaluated the application of vectorizing transfor-
mations to generate PEs from Python loop-nests and shown
our approach is productive, portable, and efficient. Porta-
bility was guaranteed as all code remains valid Python, the
brevity of our kernels demonstrated productivity, and ef-
ficiency was demonstrated by performance improvements
from 3× to 6× relative to a soft-core CPU.

8 Acknowledgements
Research supported by Microsoft and Intel funding and by
matching funding by U.C. Discovery. Additional support
comes from Par Lab affiliates Nokia, NVIDIA, Oracle, and
Samsung.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern

Architectures. Morgan Kaufmann, 2002.
[2] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead:

compiling an embedded data parallel language. In PPoPP,
2011.

[3] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. Yelick, and A. Fox. Sejits: Get-
ting productivity and performance with selective embedded
jit specialization. In PMEA, 2009.

[4] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler. Auto-
matic mapping of c to fpgas with the defacto compilation and
synthesis system. Microprocessors and Microsystems, 29(2-
3):51–62, 2005.

[5] C. Lattner and V. Adve. Llvm: a compilation framework for
lifelong program analysis transformation. In CGO, 2004.

[6] A. McFarland, M. Parker and R. Camposano. Tutorial on
high-level synthesis. In DAC, 1988.

[7] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B.R. Rau,
D. Cronquist, and M. Sivaraman. Pico-npa. Journal of VLSI
Signal Processing, 2002.

[8] A. Waterman, Y. Lee, D. Patterson, and K. Asanović. The
risc-v isa manual, volume i. Technical Report UCB/EECS-
2011-62, May 2011.

[9] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE
TCAD, pages 234 –248, 2001.

[10] Xilinx. Ug406: Virtex-6 fpga memory interface solutions.

